55-20 Integrating Time Series of Reef Fish Community Monitoring Data
Assessing population trends, evaluating management actions, and identifying community responses to anthropogenic impacts all require an accurate time series of populations. In practice, such data are often scarce or of varying quality due to the limited resources of managing agencies. In such situations, analyses that integrating multiple data sources (e.g. agency monitoring programs, citizen science observations, fisheries catch records) can yield dramatic improvements in the estimation of population trajectories. To do so effectively, however, such integrative models must account for differences in observation errors across data sources. We used multivariate state space models (MSSMs) to assess the population trajectories of reef fish species from the Florida Keys National Marine Sanctuary based on data from 1) point count surveys conducted through academic institutions and 2) citizen-science monitoring surveys conducted by volunteer Scuba divers. By developing competing models and applying information theory, we demonstrate how MSSMs can be used to compare and integrate multiple monitoring time series, and ultimately improve estimates of the true states of populations though time. Additionally, we demonstrate that by combining multiple time series, it is possible to recover method- specific observation error estimates even for very short time series of data.